Density, distribution function, quantile function,
random generation and hazard function for the exponentiated Weibull distribution with
parameters mu
, sigma
and nu
.
Usage
dEW(x, mu, sigma, nu, log = FALSE)
pEW(q, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)
qEW(p, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)
rEW(n, mu, sigma, nu)
hEW(x, mu, sigma, nu)
Value
dEW
gives the density, pEW
gives the distribution
function, qEW
gives the quantile function, rEW
generates random deviates and hEW
gives the hazard function.
Details
The Exponentiated Weibull Distribution with parameters mu
,
sigma
and nu
has density given by
\(f(x)=\nu \mu \sigma x^{\sigma-1} \exp(-\mu x^\sigma) (1-\exp(-\mu x^\sigma))^{\nu-1},\)
for \(x > 0\), \(\mu > 0\), \(\sigma > 0\) and \(\nu > 0\).
Examples
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters
## The probability density function
curve(dEW(x, mu=2, sigma=1.5, nu=0.5), from=0, to=2,
ylim=c(0, 2.5), col="red", las=1, ylab="f(x)")
## The cumulative distribution and the Reliability function
par(mfrow=c(1, 2))
curve(pEW(x, mu=2, sigma=1.5, nu=0.5),
from=0, to=2, col="red", las=1, ylab="F(x)")
curve(pEW(x, mu=2, sigma=1.5, nu=0.5, lower.tail=FALSE),
from=0, to=2, col="red", las=1, ylab="R(x)")
## The quantile function
p <- seq(from=0, to=0.99999, length.out=100)
plot(x=qEW(p, mu=2, sigma=1.5, nu=0.5), y=p, xlab="Quantile",
las=1, ylab="Probability")
curve(pEW(x, mu=2, sigma=1.5, nu=0.5), from=0, add=TRUE, col="red")
## The random function
hist(rEW(n=10000, mu=2, sigma=1.5, nu=0.5), freq=FALSE,
xlab="x", las=1, main="")
curve(dEW(x, mu=2, sigma=1.5, nu=0.5), from=0, add=TRUE, col="red")
## The Hazard function
par(mfrow=c(1,1))
curve(hEW(x, mu=2, sigma=1.5, nu=0.5), from=0, to=2, ylim=c(0, 7),
col="red", ylab="Hazard function", las=1)
par(old_par) # restore previous graphical parameters