Skip to contents

The Exponentiated Weibull distribution

Usage

EW(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

defines the mu.link, with "log" link as the default for the mu parameter.

defines the sigma.link, with "log" link as the default for the sigma.

defines the nu.link, with "log" link as the default for the nu parameter.

Value

Returns a gamlss.family object which can be used to fit a EW distribution in the gamlss() function.

Details

The Exponentiated Weibull Distribution with parameters mu, sigma and nu has density given by

\(f(x)=\nu \mu \sigma x^{\sigma-1} \exp(-\mu x^\sigma) (1-\exp(-\mu x^\sigma))^{\nu-1},\)

for x > 0.

See also

Examples

# Example 1
# Generating some random values with
# known mu, sigma and nu
# Will not be run this example because high number is cycles
# is needed in order to get good estimates
if (FALSE) { # \dontrun{
y <- rEW(n=100, mu=2, sigma=1.5, nu=0.5)

# Fitting the model
require(gamlss)
mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='EW',
              control=gamlss.control(n.cyc=5000, trace=FALSE))

# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod, what='mu'))
exp(coef(mod, what='sigma'))
exp(coef(mod, what='nu'))
} # }

# Example 2
# Generating random values under some model
# Will not be run this example because high number is cycles
# is needed in order to get good estimates
if (FALSE) { # \dontrun{
n <- 200
x1 <- rpois(n, lambda=2)
x2 <- runif(n)
mu <- exp(2 + -3 * x1)
sigma <- exp(3 - 2 * x2)
nu <- 2
x <- rEW(n=n, mu, sigma, nu)

mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, family=EW, 
              control=gamlss.control(n.cyc=5000, trace=FALSE))

coef(mod, what="mu")
coef(mod, what="sigma")
exp(coef(mod, what="nu"))
} # }