Skip to contents

The Weibull Poisson family

Usage

WP(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

defines the mu.link, with "log" link as the default for the mu parameter.

defines the sigma.link, with "log" link as the default for the sigma.

defines the nu.link, with "log" link as the default for the nu parameter.

Value

Returns a gamlss.family object which can be used to fit a WP distribution in the gamlss() function.

Details

The Weibull Poisson distribution with parameters mu, sigma and nu has density given by

\(f(x) = \frac{\mu \sigma \nu e^{-\nu}} {1-e^{-\nu}} x^{\mu-1} exp({-\sigma x^{\mu}+\nu exp({-\sigma} x^{\mu}) }),\)

for x > 0.

References

Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010 .

Wanbo L, Daimin S (1967). “A new compounding life distribution: the Weibull–Poisson distribution.” Journal of Applied Statistics, 9(1), 21–38. doi:10.1080/02664763.2011.575126 , https://doi.org/10.1080/02664763.2011.575126.

See also

Author

Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co

Examples

# Example 1
# Generating some random values with
# known mu, sigma and nu
y <- rWP(n=300, mu=1.5, sigma=0.5, nu=0.5)

# Fitting the model
require(gamlss)

mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='WP',
              control=gamlss.control(n.cyc=5000, trace=FALSE))

# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod, what='mu'))
#> (Intercept) 
#>     1.60776 
exp(coef(mod, what='sigma'))
#> (Intercept) 
#>   0.4384229 
exp(coef(mod, what='nu'))
#> (Intercept) 
#>    0.623303 

# Example 2
# Generating random values under some model
n <- 2000
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(-1.3 + 3 * x1)
sigma <- exp(0.69 - 2 * x2)
nu <- 0.5
x <- rWP(n=n, mu, sigma, nu)

mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, family=WP,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

coef(mod, what="mu")
#> (Intercept)          x1 
#>   -1.146736    2.711809 
coef(mod, what="sigma")
#> (Intercept)          x2 
#>   0.6181917  -1.8307059 
exp(coef(mod, what="nu"))
#> (Intercept) 
#>   0.5026615