Skip to contents

The Weigted Generalized Exponential-Exponential family

Usage

WGEE(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

defines the mu.link, with "log" link as the default for the mu parameter.

defines the sigma.link, with "log" link as the default for the sigma.

defines the nu.link, with "log" link as the default for the nu parameter.

Value

Returns a gamlss.family object which can be used to fit a WGEE distribution in the gamlss() function.

Details

The Weigted Generalized Exponential-Exponential distribution with parameters mu, sigma and nu has density given by

\(f(x)= \sigma \nu \exp(-\nu x) (1 - \exp(-\nu x))^{\sigma - 1} (1 - \exp(-\mu \nu x)) / 1 - \sigma B(\mu + 1, \sigma),\)

for \(x > 0\), \(\mu > 0\), \(\sigma > 0\) and \(\nu > 0\).

References

mahdavi2015twoRelDists

See also

Author

Johan David Marin Benjumea, johand.marin@udea.edu.co

Examples

# Example 1
# Generating some random values with
# known mu, sigma and  nu 
y <- rWGEE(n=1000, mu = 5, sigma = 0.5, nu = 1)

# Fitting the model
require(gamlss)

mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='WGEE',
              control=gamlss.control(n.cyc=5000, trace=FALSE))

# Extracting the fitted values for mu, sigma and nu  
# using the inverse link function
exp(coef(mod, what='mu'))
#> (Intercept) 
#>     5.41761 
exp(coef(mod, what='sigma'))
#> (Intercept) 
#>   0.5235838 
exp(coef(mod, what='nu'))
#> (Intercept) 
#>    1.009753 

# Example 2
# Generating random values under some model
n <- 500
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(2 - x1)
sigma <- exp(1 - 3*x2)
nu <- 1
x <- rWGEE(n=n, mu, sigma, nu)

mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, family=WGEE,
              control=gamlss.control(n.cyc=50000, trace=FALSE))

coef(mod, what="mu")
#> (Intercept)          x1 
#>   -2.872839   16.594538 
coef(mod, what="sigma")
#> (Intercept)          x2 
#>   0.7384625  -1.0565619 
exp(coef(mod, what="nu"))
#> (Intercept) 
#>    1.179307