Skip to contents

The Marshall-Olkin Kappa family

Usage

MOK(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "log")

Arguments

defines the mu.link, with "log" link as the default for the mu parameter.

defines the sigma.link, with "log" link as the default for the sigma.

defines the nu.link, with "log" link as the default for the nu parameter.

defines the tau.link, with "log" link as the default for the tau parameter.

Value

Returns a gamlss.family object which can be used to fit a MOK distribution in the gamlss() function.

Details

The Marshall-Olkin Kappa distribution with parameters mu, sigma, nu and tau has density given by

\(f(x)=\frac{\tau\frac{\mu\nu}{\sigma}\left(\frac{x}{\sigma}\right)^{\nu-1} \left(\mu+\left(\frac{x}{\sigma}\right)^{\mu\nu}\right)^{-\frac{\mu+1}{\mu}}}{\left(\tau+(1-\tau)\left(\frac{\left(\frac{x}{\sigma}\right)^{\mu\nu}}{\mu+\left(\frac{x}{\sigma}\right)^{\mu\nu}}\right)^{\frac{1}{\mu}}\right)^2}\)

for x > 0.

References

javed2018marshallRelDists

See also

Author

Johan David Marin Benjumea, johand.marin@udea.edu.co

Examples

# Example 1
# Generating some random values with
# known mu, sigma, nu and tau
y <- rMOK(n=100, mu = 1, sigma = 3.5, nu = 3, tau = 2)

# Fitting the model
require(gamlss)

mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, tau.fo=~1, family=MOK,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

# Extracting the fitted values for mu, sigma, nu and tau
# using the inverse link function
exp(coef(mod, what='mu'))
#> (Intercept) 
#>     1.80385 
exp(coef(mod, what='sigma'))
#> (Intercept) 
#>    5.990718 
exp(coef(mod, what='nu'))
#> (Intercept) 
#>    2.301633 
exp(coef(mod, what='tau'))
#> (Intercept) 
#>   0.4341955 

# Example 2
# Generating random values under some model
n <- 200
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(0.5 + x1)
sigma <- exp(0.8 + x2)
nu <- 1
tau <- 0.5
x <- rMOK(n=n, mu, sigma, nu, tau)

mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, tau.fo=~1, family=MOK,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

coef(mod, what="mu")
#> (Intercept)          x1 
#>    1.865873   -1.716180 
coef(mod, what="sigma")
#> (Intercept)          x2 
#>   0.8279058  -0.5062949 
exp(coef(mod, what="nu"))
#> (Intercept) 
#>   0.7884017 
exp(coef(mod, what="tau"))
#> (Intercept) 
#>    1.466607