Skip to contents

Desnsity, distribution function, quantile function, random generation and hazard function for the Marshall-Olkin Kappa distribution with parameters mu, sigma, nu and tau.

Usage

dMOK(x, mu, sigma, nu, tau, log = FALSE)

pMOK(q, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE)

qMOK(p, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE)

rMOK(n, mu, sigma, nu, tau)

hMOK(x, mu, sigma, nu, tau)

Arguments

x, q

vector of quantiles.

mu

parameter.

sigma

parameter.

nu

parameter.

tau

parameter.

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].

p

vector of probabilities.

n

number of observations.

Value

dMOK gives the density, pMOK gives the distribution function, qMOK gives the quantile function, rMOK generates random deviates and hMOK gives the hazard function.

Details

The Marshall-Olkin Kappa distribution with parameters mu, sigma, nu and tau has density given by:

\(f(x)=\frac{\tau\frac{\mu\nu}{\sigma}\left(\frac{x}{\sigma}\right)^{\nu-1} \left(\mu+\left(\frac{x}{\sigma}\right)^{\mu\nu}\right)^{-\frac{\mu+1}{\mu}}}{\left[\tau+(1-\tau)\left(\frac{\left(\frac{x}{\sigma}\right)^{\mu\nu}}{\mu+\left(\frac{x}{\sigma}\right)^{\mu\nu}}\right)^{\frac{1}{\mu}}\right]^2}\)

for x > 0.

References

Javed M, Nawaz T, Irfan M (2018). “The Marshall-Olkin kappa distribution: properties and applications.” Journal of King Saud University-Science.

Author

Angel Muñoz,

Examples

old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters

## The probability density function
par(mfrow = c(1,1))
curve(dMOK(x = x, mu = 1, sigma = 3.5, nu = 3, tau = 2), from = 0, to = 15,
      ylab = 'f(x)', col = 2, las = 1)


## The cumulative distribution and the Reliability function

par(mfrow = c(1,2))
curve(pMOK(q = x, mu = 1, sigma = 2.5, nu = 3, tau = 2), from = 0, to = 10,
     col = 2, lwd = 2, las = 1, ylab = 'F(x)')
curve(pMOK(q = x, mu = 1, sigma = 2.5, nu = 3, tau = 2, lower.tail = FALSE), from = 0, to = 10,
      col = 2, lwd = 2, las = 1, ylab = 'R(x)')


## The quantile function
p <- seq(from = 0.00001, to = 0.99999, length.out = 100)
plot(x = qMOK(p = p, mu = 4, sigma = 2.5, nu = 3, tau = 2), y = p, xlab = 'Quantile',
     las = 1, ylab = 'Probability')
curve(pMOK(q = x, mu = 4, sigma = 2.5, nu = 3, tau = 2), from = 0, to = 15,
      add = TRUE, col = 2)

## The random function

hist(rMOK(n = 10000, mu = 1, sigma = 2.5, nu = 3, tau = 2), freq = FALSE,
     xlab = "x", las = 1, main = '', ylim = c(0,.3), xlim = c(0,20), breaks = 50)
curve(dMOK(x, mu = 1, sigma = 2.5, nu = 3, tau = 2), from = 0, to = 15, add = TRUE, col = 2)


## The Hazard function

par(mfrow = c(1,1))
curve(hMOK(x = x, mu = 1, sigma = 2.5, nu = 3, tau = 2), from = 0, to = 20,
      col = 2, ylab = 'Hazard function', las = 1)


par(old_par) # restore previous graphical parameters