Skip to contents

The Kumaraswamy Inverse Weibull family

Usage

KumIW(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

defines the mu.link, with "log" link as the default for the mu parameter.

defines the sigma.link, with "log" link as the default for the sigma.

defines the nu.link, with "log" link as the default for the nu parameter.

Value

Returns a gamlss.family object which can be used to fit a KumIW distribution in the gamlss() function.

Details

The Kumaraswamy Inverse Weibull Distribution with parameters mu, sigma and nu has density given by

\(f(x)= \mu \sigma \nu x^{-\sigma - 1} \exp{- \mu x^{-\sigma}} (1 - \exp{- \mu x^{-\sigma}})^{\nu - 1},\)

for \(x > 0\), \(\mu > 0\), \(\sigma > 0\) and \(\nu > 0\).

The KumIW distribution with \(\nu=1\) corresponds with the IW distribution.

References

Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010 .

Shahbaz MQ, Shahbaz S, Butt NS (2012). “The Kumaraswamy-Inverse Weibull Distribution.” Pakistan journal of statistics and operation research, 8(3), 479–489.

See also

Author

Freddy Hernandez, fhernanb@unal.edu.co

Examples

# Example 1
# Generating some random values with
# known mu, sigma and nu
y <- rKumIW(n=100, mu=1.5, sigma=2.3, nu=1)

# Fitting the model
require(gamlss)

mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family=KumIW,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

# Extracting the fitted values for mu, sigma and nu 
# using the inverse link function
exp(coef(mod, what="mu"))
#> (Intercept) 
#>    1.475667 
exp(coef(mod, what="sigma"))
#> (Intercept) 
#>    2.126994 
exp(coef(mod, what="nu"))
#> (Intercept) 
#>    1.056507 

# Example 2
# Generating random values under some model
n <- 200
x1 <- runif(n)
x2 <- runif(n)
mu <- exp(1 +  -1 * x1)
sigma <- exp(1 + -1 * x2)
nu <- 5
y <- rKumIW(n=n, mu=mu, sigma=sigma, nu=nu)

mod <- gamlss(y~x1, sigma.fo=~x2, nu.fo=~1, family=KumIW,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

coef(mod, what="mu")
#> (Intercept)          x1 
#>   0.7880734  -1.4205981 
coef(mod, what="sigma")
#> (Intercept)          x2 
#>   1.2452212  -0.9949117 
exp(coef(mod, what="nu"))
#> (Intercept) 
#>    2.604682