The Kumaraswamy Inverse Weibull family
Value
Returns a gamlss.family object which can be used to fit a KumIW distribution in the gamlss()
function.
Details
The Kumaraswamy Inverse Weibull Distribution with parameters mu
,
sigma
and nu
has density given by
\(f(x)= \mu \sigma \nu x^{-\sigma - 1} \exp{- \mu x^{-\sigma}} (1 - \exp{- \mu x^{-\sigma}})^{\nu - 1},\)
for \(x > 0\), \(\mu > 0\), \(\sigma > 0\) and \(\nu > 0\).
The KumIW distribution with \(\nu=1\) corresponds with the IW distribution.
References
Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010 .
Shahbaz MQ, Shahbaz S, Butt NS (2012). “The Kumaraswamy-Inverse Weibull Distribution.” Pakistan journal of statistics and operation research, 8(3), 479–489.
Author
Freddy Hernandez, fhernanb@unal.edu.co
Examples
# Example 1
# Generating some random values with
# known mu, sigma and nu
y <- rKumIW(n=100, mu=1.5, sigma=2.3, nu=1)
# Fitting the model
require(gamlss)
mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family=KumIW,
control=gamlss.control(n.cyc=5000, trace=FALSE))
# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod, what="mu"))
#> (Intercept)
#> 1.475667
exp(coef(mod, what="sigma"))
#> (Intercept)
#> 2.126994
exp(coef(mod, what="nu"))
#> (Intercept)
#> 1.056507
# Example 2
# Generating random values under some model
n <- 200
x1 <- runif(n)
x2 <- runif(n)
mu <- exp(1 + -1 * x1)
sigma <- exp(1 + -1 * x2)
nu <- 5
y <- rKumIW(n=n, mu=mu, sigma=sigma, nu=nu)
mod <- gamlss(y~x1, sigma.fo=~x2, nu.fo=~1, family=KumIW,
control=gamlss.control(n.cyc=5000, trace=FALSE))
coef(mod, what="mu")
#> (Intercept) x1
#> 0.7880734 -1.4205981
coef(mod, what="sigma")
#> (Intercept) x2
#> 1.2452212 -0.9949117
exp(coef(mod, what="nu"))
#> (Intercept)
#> 2.604682