Density, distribution function, quantile function,
random generation and hazard function for the Kumaraswamy Inverse Weibull distribution
with parameters mu
, sigma
and nu
.
Usage
dKumIW(x, mu, sigma, nu, log = FALSE)
pKumIW(q, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)
qKumIW(p, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)
rKumIW(n, mu, sigma, nu)
hKumIW(x, mu, sigma, nu)
Value
dKumIW
gives the density, pKumIW
gives the distribution
function, qKumIW
gives the quantile function, rKumIW
generates random deviates and hKumIW
gives the hazard function.
Details
The Kumaraswamy Inverse Weibull Distribution with parameters mu
,
sigma
and nu
has density given by
\(f(x)= \mu \sigma \nu x^{-\sigma - 1} \exp{- \mu x^{-\sigma}} (1 - \exp{- \mu x^{-\sigma}})^{\nu - 1},\)
for \(x > 0\), \(\mu > 0\), \(\sigma > 0\) and \(\nu > 0\).
The KumIW distribution with \(\nu=1\) corresponds with the IW distribution.
References
Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010 .
Shahbaz MQ, Shahbaz S, Butt NS (2012). “The Kumaraswamy-Inverse Weibull Distribution.” Pakistan journal of statistics and operation research, 8(3), 479–489.
Author
Freddy Hernandez, fhernanb@unal.edu.co
Examples
# The probability density function
curve(dKumIW(x, mu=1.5, sigma=2.3, nu=1.7), from=0, to=8,
col="red", las=1, ylab="f(x)")
# The cumulative distribution and the Reliability function
par(mfrow=c(1, 2))
curve(pKumIW(x, mu=1.5, sigma=2.3, nu=1.7), from=0, to=8,
ylim=c(0, 1), col="red", las=1, ylab="F(x)")
curve(pKumIW(x, mu=1.5, sigma=2.3, nu=1.7, lower.tail=FALSE),
from=0, to=8, ylim=c(0, 1), col="red", las=1, ylab="R(x)")
# The quantile function
p <- seq(from=0, to=0.99, length.out=100)
plot(x=qKumIW(p=p, mu=1.5, sigma=2.3, nu=1.7), y=p,
xlab="Quantile", las=1, ylab="Probability")
curve(pKumIW(x, mu=1.5, sigma=2.3, nu=1.7),
from=0, add=TRUE, col="red")
# The random function
hist(rKumIW(1000, mu=1.5, sigma=2.3, nu=1.7), freq=FALSE,
xlab="x", las=1, main="", xlim=c(0, 8))
curve(dKumIW(x, mu=1.5, sigma=2.3, nu=1.7), from=0, to=8, add=TRUE,
col="red")
# The Hazard function
par(mfrow=c(1, 1))
curve(hKumIW(x, mu=1.5, sigma=2.3, nu=1.7), from=0, to=8,
col="red", ylab="Hazard function", las=1)