The Generalized Inverse Weibull family
Value
Returns a gamlss.family object which can be used to fit a GIW distribution in the gamlss()
function.
Details
The Generalized Inverse Weibull distribution with parameters mu
,
sigma
and nu
has density given by
\(f(x) = \nu \sigma \mu^{\sigma} x^{-(\sigma + 1)} exp \{-\nu (\frac{\mu}{x})^{\sigma}\},\)
for x > 0.
References
Felipe R SdG, Edwin M MO, Gauss M C (2009). “The generalized inverse Weibull distribution.” Statistical papers, 52(3), 591–619. doi:10.1007/s00362-009-0271-3 .
Author
Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co
Examples
# Example 1
# Generating some random values with
# known mu, sigma and nu
y <- rGIW(n=200, mu=3, sigma=5, nu=0.5)
# Fitting the model
require(gamlss)
mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='GIW',
control=gamlss.control(n.cyc=5000, trace=FALSE))
# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod, what='mu'))
#> (Intercept)
#> 2.776996
exp(coef(mod, what='sigma'))
#> (Intercept)
#> 5.747789
exp(coef(mod, what='nu'))
#> (Intercept)
#> 0.6439106
# Example 2
# Generating random values under some model
n <- 500
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(-1.02 + 3 * x1)
sigma <- exp(1.69 - 2 * x2)
nu <- 0.5
x <- rGIW(n=n, mu, sigma, nu)
mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, family=GIW,
control=gamlss.control(n.cyc=5000, trace=FALSE))
coef(mod, what="mu")
#> (Intercept) x1
#> -1.071631 2.929594
coef(mod, what="sigma")
#> (Intercept) x2
#> 1.642404 -1.869564
exp(coef(mod, what="nu"))
#> (Intercept)
#> 0.5757264