Density, distribution function, quantile function,
random generation and hazard function for the Generalized Inverse Weibull distribution
with parameters mu
, sigma
and nu
.
Usage
dGIW(x, mu, sigma, nu, log = FALSE)
pGIW(q, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)
qGIW(p, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)
rGIW(n, mu, sigma, nu)
hGIW(x, mu, sigma, nu)
Value
dGIW
gives the density, pGIW
gives the distribution
function, qGIW
gives the quantile function, rGIW
generates random deviates and hGIW
gives the hazard function.
Details
The Generalized Inverse Weibull distribution mu
,
sigma
and nu
has density given by
\(f(x) = \nu \sigma \mu^{\sigma} x^{-(\sigma + 1)} exp \{-\nu (\frac{\mu}{x})^{\sigma}\},\)
for x > 0.
References
Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010 .
Felipe R SdG, Edwin M MO, Gauss M C (2009). “The generalized inverse Weibull distribution.” Statistical papers, 52(3), 591–619. doi:10.1007/s00362-009-0271-3 .
Author
Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co
Examples
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters
## The probability density function
curve(dGIW(x, mu=3, sigma=5, nu=0.5), from=0.001, to=8,
col="red", ylab="f(x)", las=1)
## The cumulative distribution and the Reliability function
par(mfrow=c(1, 2))
curve(pGIW(x, mu=3, sigma=5, nu=0.5),
from=0.0001, to=14, col="red", las=1, ylab="F(x)")
curve(pGIW(x, mu=3, sigma=5, nu=0.5, lower.tail=FALSE),
from=0.0001, to=14, col="red", las=1, ylab="R(x)")
## The quantile function
p <- seq(from=0, to=0.99999, length.out=100)
plot(x=qGIW(p, mu=3, sigma=5, nu=0.5), y=p, xlab="Quantile",
las=1, ylab="Probability")
curve(pGIW(x, mu=3, sigma=5, nu=0.5),
from=0, add=TRUE, col="red")
## The random function
hist(rGIW(n=1000, mu=3, sigma=5, nu=0.5), freq=FALSE,
xlab="x", ylim=c(0, 0.8), las=1, main="")
curve(dGIW(x, mu=3, sigma=5, nu=0.5),
from=0.001, to=14, add=TRUE, col="red")
## The Hazard function
curve(hGIW(x, mu=3, sigma=5, nu=0.5), from=0.001, to=30,
col="red", ylab="Hazard function", las=1)
par(old_par) # restore previous graphical parameters