The Extended Odd Frechet-Nadarjad-Hanhighi family
Arguments
- mu.link
defines the mu.link, with "log" link as the default for the mu parameter.
- sigma.link
defines the sigma.link, with "log" link as the default for the sigma.
- nu.link
defines the nu.link, with "log" link as the default for the nu parameter.
- tau.link
defines the tau.link, with "log" link as the default for the tau parameter.
Value
Returns a gamlss.family object which can be used to fit a EOFNH distribution in the gamlss()
function.
Details
The Extended Odd Frechet-Nadarjad-Hanhighi distribution with parameters mu
,
sigma
, nu
and tau
has density given by
\(f(x)= \frac{\mu\sigma\nu\tau(1+\nu x)^{\sigma-1}e^{(1-(1+\nu x)^\sigma)}[1-(1-e^{(1-(1+\nu x)^\sigma)})^{\mu}]^{\tau-1}}{(1-e^{(1-(1+\nu x)^{\sigma})})^{\mu\tau+1}} e^{-[(1-e^{(1-(1+\nu x)^\sigma)})^{-\mu}-1]^{\tau}},\)
for \(x > 0\), \(\mu > 0\), \(\sigma > 0\), \(\nu > 0\) and \(\tau > 0\).
References
Nasiru S (2018). “Extended Odd Fréchet-G Family of Distributions.” Journal of Probability and Statistics, 2018.
Author
Johan David Marin Benjumea, johand.marin@udea.edu.co
Examples
# Example 1
# Generating some random values with
# known mu, sigma, nu and tau
y <- rEOFNH(n=100, mu=1, sigma=2.1, nu=0.8, tau=1)
# Fitting the model
require(gamlss)
mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, tau.fo=~1, family=EOFNH,
control=gamlss.control(n.cyc=5000, trace=FALSE))
# Extracting the fitted values for mu, sigma, nu and tau
# using the inverse link function
exp(coef(mod, what='mu'))
#> (Intercept)
#> 0.7709808
exp(coef(mod, what='sigma'))
#> (Intercept)
#> 1.950042
exp(coef(mod, what='nu'))
#> (Intercept)
#> 0.6955285
exp(coef(mod, what='tau'))
#> (Intercept)
#> 1.282222
# Example 2
# Generating random values under some model
n <- 200
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(0.5 + x1)
sigma <- exp(0.8 + x2)
nu <- 1
tau <- 0.5
x <- rEOFNH(n=n, mu, sigma, nu, tau)
mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, tau.fo=~1, family=EOFNH,
control=gamlss.control(n.cyc=5000, trace=FALSE))
coef(mod, what="mu")
#> (Intercept) x1
#> 0.8764594 1.1389432
coef(mod, what="sigma")
#> (Intercept) x2
#> 1.028776 1.978214
exp(coef(mod, what="nu"))
#> (Intercept)
#> 0.4979135
exp(coef(mod, what="tau"))
#> (Intercept)
#> 0.336711