Skip to contents

The Extended Odd Frechet-Nadarjad-Hanhighi family

Usage

EOFNH(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "log")

Arguments

defines the mu.link, with "log" link as the default for the mu parameter.

defines the sigma.link, with "log" link as the default for the sigma.

defines the nu.link, with "log" link as the default for the nu parameter.

defines the tau.link, with "log" link as the default for the tau parameter.

Value

Returns a gamlss.family object which can be used to fit a EOFNH distribution in the gamlss() function.

Details

The Extended Odd Frechet-Nadarjad-Hanhighi distribution with parameters mu, sigma, nu and tau has density given by

\(f(x)= \frac{\mu\sigma\nu\tau(1+\nu x)^{\sigma-1}e^{(1-(1+\nu x)^\sigma)}[1-(1-e^{(1-(1+\nu x)^\sigma)})^{\mu}]^{\tau-1}}{(1-e^{(1-(1+\nu x)^{\sigma})})^{\mu\tau+1}} e^{-[(1-e^{(1-(1+\nu x)^\sigma)})^{-\mu}-1]^{\tau}},\)

for \(x > 0\), \(\mu > 0\), \(\sigma > 0\), \(\nu > 0\) and \(\tau > 0\).

References

Nasiru S (2018). “Extended Odd Fréchet-G Family of Distributions.” Journal of Probability and Statistics, 2018.

See also

Author

Johan David Marin Benjumea, johand.marin@udea.edu.co

Examples

# Example 1
# Generating some random values with
# known mu, sigma, nu and tau
y <- rEOFNH(n=100, mu=1, sigma=2.1, nu=0.8, tau=1)

# Fitting the model
require(gamlss)

mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, tau.fo=~1, family=EOFNH,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

# Extracting the fitted values for mu, sigma, nu and tau
# using the inverse link function
exp(coef(mod, what='mu'))
#> (Intercept) 
#>   0.7709808 
exp(coef(mod, what='sigma'))
#> (Intercept) 
#>    1.950042 
exp(coef(mod, what='nu'))
#> (Intercept) 
#>   0.6955285 
exp(coef(mod, what='tau'))
#> (Intercept) 
#>    1.282222 

# Example 2
# Generating random values under some model
n <- 200
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(0.5 + x1)
sigma <- exp(0.8 + x2)
nu <- 1
tau <- 0.5
x <- rEOFNH(n=n, mu, sigma, nu, tau)

mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, tau.fo=~1, family=EOFNH,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

coef(mod, what="mu")
#> (Intercept)          x1 
#>   0.8764594   1.1389432 
coef(mod, what="sigma")
#> (Intercept)          x2 
#>    1.028776    1.978214 
exp(coef(mod, what="nu"))
#> (Intercept) 
#>   0.4979135 
exp(coef(mod, what="tau"))
#> (Intercept) 
#>    0.336711