The Exponentiated Modifien Weibull Extension family
Arguments
- mu.link
defines the mu.link, with "log" link as the default for the mu parameter.
- sigma.link
defines the sigma.link, with "log" link as the default for the sigma.
- nu.link
defines the nu.link, with "log" link as the default for the nu parameter.
- tau.link
defines the tau.link, with "log" link as the default for the tau parameter.
Value
Returns a gamlss.family object which can be used to fit a EMWEx distribution in the gamlss()
function.
Details
The Beta-Weibull distribution with parameters mu
,
sigma
, nu
and tau
has density given by
\(f(x)= \nu \sigma \tau (\frac{x}{\mu})^{\sigma-1} \exp((\frac{x}{\mu})^\sigma + \nu \mu (1- \exp((\frac{x}{\mu})^\sigma))) (1 - \exp (\nu\mu (1- \exp((\frac{x}{\mu})^\sigma))))^{\tau-1} ,\)
for \(x > 0\), \(\nu> 0\), \(\mu > 0\), \(\sigma> 0\) and \(\tau > 0\).
References
Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010 .
Sarhan AM, Apaloo J (2013). “Exponentiated modified Weibull extension distribution.” Reliability Engineering & System Safety, 112, 137–144.
Author
Johan David Marin Benjumea, johand.marin@udea.edu.co
Examples
# Example 1
# Generating some random values with
# known mu, sigma, nu and tau
y <- rEMWEx(n=100, mu = 1, sigma =1.21, nu=1, tau=2)
# Fitting the model
require(gamlss)
mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, tau.fo=~1, family=EMWEx,
control=gamlss.control(n.cyc=5000, trace=FALSE))
# Extracting the fitted values for mu, sigma, nu and tau
# using the inverse link function
exp(coef(mod, what='mu'))
#> (Intercept)
#> 1.009334
exp(coef(mod, what='sigma'))
#> (Intercept)
#> 1.544222
exp(coef(mod, what='nu'))
#> (Intercept)
#> 0.904134
exp(coef(mod, what='tau'))
#> (Intercept)
#> 1.843799
# Example 2
# Generating random values under some model
n <- 200
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(0.75 - x1)
sigma <- exp(0.5 - x2)
nu <- 1
tau <- 2
x <- rEMWEx(n=n, mu, sigma, nu, tau)
mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, tau.fo=~1, family=EMWEx,
control=gamlss.control(n.cyc=5000, trace=FALSE))
coef(mod, what="mu")
#> (Intercept) x1
#> 1.1923921 -0.8779842
coef(mod, what="sigma")
#> (Intercept) x2
#> 0.8559521 -0.9709919
exp(coef(mod, what="nu"))
#> (Intercept)
#> 1.580503
exp(coef(mod, what="tau"))
#> (Intercept)
#> 1.52349