Skip to contents

The Beta Generalized Exponentiated family

Usage

BGE(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "log")

Arguments

defines the mu.link, with "log" link as the default for the mu parameter.

defines the sigma.link, with "log" link as the default for the sigma.

defines the nu.link, with "log" link as the default for the nu parameter.

defines the tau.link, with "log" link as the default for the tau parameter.

Value

Returns a gamlss.family object which can be used to fit a BGE distribution in the gamlss() function.

Details

The Beta Generalized Exponentiated distribution with parameters mu, sigma, nu and tau has density given by

\(f(x)= \frac{\nu \tau}{B(\mu, \sigma)} \exp(-\nu x)(1- \exp(-\nu x))^{\tau \mu - 1} (1 - (1- \exp(-\nu x))^\tau)^{\sigma -1},\)

for \(x > 0\), \(\mu > 0\), \(\sigma > 0\), \(\nu > 0\) and \(\tau > 0\).

References

Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010 .

Barreto-Souza W, Santos AH, Cordeiro GM (2010). “The beta generalized exponential distribution.” Journal of Statistical Computation and Simulation, 80(2), 159–172.

See also

Author

Johan David Marin Benjumea, johand.marin@udea.edu.co

Examples

# Generating some random values with
# known mu, sigma, nu and tau
y <- rBGE(n=100, mu = 1.5, sigma =1.7, nu=1, tau=1)

# Fitting the model
require(gamlss)
#> Loading required package: gamlss
#> Loading required package: splines
#> Loading required package: gamlss.data
#> 
#> Attaching package: ‘gamlss.data’
#> The following object is masked from ‘package:datasets’:
#> 
#>     sleep
#> Loading required package: gamlss.dist
#> Loading required package: nlme
#> 
#> Attaching package: ‘nlme’
#> The following object is masked from ‘package:BBmisc’:
#> 
#>     collapse
#>  **********   GAMLSS Version 5.4-22  ********** 
#> For more on GAMLSS look at https://www.gamlss.com/
#> Type gamlssNews() to see new features/changes/bug fixes.

mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, tau.fo=~1, family=BGE,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

# Extracting the fitted values for mu, sigma, nu and tau
# using the inverse link function
exp(coef(mod, what='mu'))
#> (Intercept) 
#>    1.291091 
exp(coef(mod, what='sigma'))
#> (Intercept) 
#>   0.7667065 
exp(coef(mod, what='nu'))
#> (Intercept) 
#>    2.260267 
exp(coef(mod, what='tau'))
#> (Intercept) 
#>    1.240522 

# Example 2
# Generating random values under some model
n <- 200
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(0.5 - x1)
sigma <- exp(0.8 - x2)
nu <- 1
tau <- 1
x <- rBGE(n=n, mu, sigma, nu, tau)

mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, tau.fo=~1, family=BGE,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

coef(mod, what="mu")
#> (Intercept)          x1 
#>    1.543910   -1.318217 
coef(mod, what="sigma")
#> (Intercept)          x2 
#>    1.441633   -2.497046 
exp(coef(mod, what="nu"))
#> (Intercept) 
#>    1.086642 
exp(coef(mod, what="tau"))
#> (Intercept) 
#>   0.4448615