Density, distribution function, quantile function,
random generation and hazard function for the Flexible Weibull Extension distribution with
parameters mu
and sigma
.
Usage
dFWE(x, mu, sigma, log = FALSE)
pFWE(q, mu, sigma, lower.tail = TRUE, log.p = FALSE)
qFWE(p, mu, sigma, lower.tail = TRUE, log.p = FALSE)
rFWE(n, mu, sigma)
hFWE(x, mu, sigma)
Value
dFWE
gives the density, pFWE
gives the distribution
function, qFWE
gives the quantile function, rFWE
generates random deviates and hFWE
gives the hazard function.
Details
The Flexible Weibull extension with parameters mu
and sigma
has density given by
\(f(x) = (\mu + \sigma/x^2) \exp(\mu x - \sigma/x) \exp(-\exp(\mu x-\sigma/x))\)
for x>0.
Examples
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters
## The probability density function
curve(dFWE(x, mu=0.75, sigma=0.5), from=0, to=3,
ylim=c(0, 1.7), col="red", las=1, ylab="f(x)")
## The cumulative distribution and the Reliability function
par(mfrow=c(1, 2))
curve(pFWE(x, mu=0.75, sigma=0.5), from=0, to=3,
col="red", las=1, ylab="F(x)")
curve(pFWE(x, mu=0.75, sigma=0.5, lower.tail=FALSE),
from=0, to=3, col="red", las=1, ylab="R(x)")
## The quantile function
p <- seq(from=0, to=0.99999, length.out=100)
plot(x=qFWE(p, mu=0.75, sigma=0.5), y=p, xlab="Quantile",
las=1, ylab="Probability")
curve(pFWE(x, mu=0.75, sigma=0.5), from=0, add=TRUE, col="red")
## The random function
hist(rFWE(n=1000, mu=2, sigma=0.5), freq=FALSE, xlab="x",
ylim=c(0, 2), las=1, main="")
curve(dFWE(x, mu=2, sigma=0.5), from=0, to=3, add=TRUE, col="red")
## The Hazard function
par(mfrow=c(1,1))
curve(hFWE(x, mu=0.75, sigma=0.5), from=0, to=2, ylim=c(0, 2.5),
col="red", ylab="Hazard function", las=1)
par(old_par) # restore previous graphical parameters