Skip to contents

Density, distribution function, quantile function, random generation and hazard function for the exponentiated XLindley distribution with parameters mu and sigma.

Usage

dEXL(x, mu, sigma, log = FALSE)

pEXL(q, mu, sigma, log.p = FALSE, lower.tail = TRUE)

qEXL(p, mu, sigma, lower.tail = TRUE, log.p = FALSE)

rEXL(n, mu, sigma)

hEXL(x, mu, sigma, log = FALSE)

Arguments

x, q

vector of quantiles.

mu

parameter.

sigma

parameter.

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].

p

vector of probabilities.

n

number of observations.

Value

dEXL gives the density, pEXL gives the distribution function, qEXL gives the quantile function, rEXL generates random deviates and hEXL gives the hazard function.

Details

The exponentiated XLindley with parameters mu and sigma has density given by

\( f(x) = \frac{\sigma\mu^2(2+\mu + x)\exp(-\mu x)}{(1+\mu)^2}\left[1- \left(1+\frac{\mu x}{(1 + \mu)^2}\right) \exp(-\mu x)\right] ^ {\sigma-1} \)

for \(x \geq 0\), \(\mu \geq 0\) and \(\sigma \geq 0\).

Note: In this implementation we changed the original parameters \(\delta\) for \(\mu\) and \(\alpha\) for \(\sigma\), we did it to implement this distribution within gamlss framework.

References

Alomair, A. M., Ahmed, M., Tariq, S., Ahsan-ul-Haq, M., & Talib, J. (2024). An exponentiated XLindley distribution with properties, inference and applications. Heliyon, 10(3).

Author

Manuel Gutierrez Tangarife, mgutierrezta@unal.edu.co

Examples

#Example 1
#Plotting the mass function for different parameter values
curve(dEXL(x, mu=0.5, sigma=0.5), 
      from=0.001, to=5,
      ylim=c(0, 1), 
      col="royalblue1", lwd=2, 
      main="Density function",
      xlab="x", ylab="f(x)")
curve(dEXL(x, mu=1, sigma=0.5),
      col="tomato", 
      lwd=2,
      add=TRUE)
curve(dEXL(x, mu=1.5, sigma=0.5),
      col="seagreen",
      lwd=2,
      add=TRUE)
legend("topright", legend=c("mu=0.5, sigma=0.5", 
                            "mu=1.0, sigma=0.5",
                            "mu=1.5, sigma=0.5"),
       col=c("royalblue1", "tomato", "seagreen"), lwd=2, cex=0.6)



curve(dEXL(x, mu=0.5, sigma=1), 
      from=0.001, to=5,
      ylim=c(0, 1), 
      col="royalblue1", lwd=2, 
      main="Density function",
      xlab="x", ylab="f(x)")
curve(dEXL(x, mu=1, sigma=1),
      col="tomato", 
      lwd=2,
      add=TRUE)
curve(dEXL(x, mu=1.5, sigma=1),
      col="seagreen",
      lwd=2,
      add=TRUE)
legend("topright", legend=c("mu=0.5, sigma=1", 
                            "mu=1.0, sigma=1",
                            "mu=1.5, sigma=1"),
       col=c("royalblue1", "tomato", "seagreen"), lwd=2, cex=0.6)



curve(dEXL(x, mu=0.5, sigma=1.5), 
      from=0.001, to=8,
      ylim=c(0, 1), 
      col="royalblue1", lwd=2, 
      main="Density function",
      xlab="x", ylab="f(x)")
curve(dEXL(x, mu=1, sigma=1.5),
      col="tomato", 
      lwd=2,
      add=TRUE)
curve(dEXL(x, mu=1.5, sigma=1.5),
      col="seagreen",
      lwd=2,
      add=TRUE)
legend("topright", legend=c("mu=0.5, sigma=1.5", 
                            "mu=1.0, sigma=1.5",
                            "mu=1.5, sigma=1.5"),
       col=c("royalblue1", "tomato", "seagreen"), lwd=2, cex=0.6)


# Example 2
# Checking if the cumulative curves converge to 1
curve(pEXL(x, mu=0.5, sigma=0.5), 
      from=0.001, to=5,
      ylim=c(0, 1), 
      col="royalblue1", lwd=2, 
      main="Cumulative Distribution Function",
      xlab="x", ylab="f(x)")
curve(pEXL(x, mu=1, sigma=0.5),
      col="tomato", 
      lwd=2,
      add=TRUE)
curve(pEXL(x, mu=1.5, sigma=0.5),
      col="seagreen",
      lwd=2,
      add=TRUE)
legend("bottomright", legend=c("mu=0.5, sigma=0.5", 
                               "mu=1.0, sigma=0.5",
                               "mu=1.5, sigma=0.5"),
       col=c("royalblue1", "tomato", "seagreen"), lwd=2, cex=0.5)

curve(pEXL(x, mu=0.5, sigma=0.5, lower.tail=FALSE), 
      from=0.001, to=5,
      ylim=c(0, 1), 
      col="royalblue1", lwd=2, 
      main="Cumulative Distribution Function",
      xlab="x", ylab="f(x)")
curve(pEXL(x, mu=1, sigma=0.5, lower.tail=FALSE),
      col="tomato", 
      lwd=2,
      add=TRUE)
curve(pEXL(x, mu=1.5, sigma=0.5, lower.tail=FALSE),
      col="seagreen",
      lwd=2,
      add=TRUE)
legend("topright", legend=c("mu=0.5, sigma=0.5", 
                            "mu=1.0, sigma=0.5",
                            "mu=1.5, sigma=0.5"),
       col=c("royalblue1", "tomato", "seagreen"), lwd=2, cex=0.5)


#example 3
## The quantile function
p <- seq(from=0, to=0.99999, length.out=100)
plot(x=qEXL(p, mu=2.3, sigma=1.7), y=p, xlab="Quantile",
     las=1, ylab="Probability", main="Quantile function ")
curve(pEXL(x, mu=2.3, sigma=1.7), 
      from=0, add=TRUE, col="tomato", lwd=2.5)


#some values
p <- c(0.25, 0.5, 0.75)
quantile <- qEXL(p=p, mu=2.3, sigma=1.7) 
for(i in quantile){
  print(integrate(dEXL, lower=0, upper=i, mu=2.3, sigma=1.7))
}
#> 0.2500001 with absolute error < 4.9e-05
#> 0.5 with absolute error < 4.4e-05
#> 0.7500001 with absolute error < 0.00012

#example 4
## The random function
x <- rEXL(n=10000, mu=1.5, sigma=2.5)
hist(x, freq=FALSE)
curve(dEXL(x, mu=1.5, sigma=2.5), from=0, to=20, 
      add=TRUE, col="tomato", lwd=2)


#example 5
## The Hazard function
curve(hEXL(x, mu=1.5, sigma=2), from=0.001, to=4,
      col="tomato", ylab="Hazard function", las=1)