Density, distribution function, quantile function,
random generation and hazard function for the four parameter Exponentiated Generalized Gamma distribution
with parameters mu
, sigma
, nu
and tau
.
Usage
dEGG(x, mu, sigma, nu, tau, log = FALSE)
pEGG(q, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE)
qEGG(p, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE)
rEGG(n, mu, sigma, nu, tau)
hEGG(x, mu, sigma, nu, tau)
Value
dEGG
gives the density, pEGG
gives the distribution
function, qEGG
gives the quantile function, rEGG
generates random deviates and hEGG
gives the hazard function.
Details
Four-Parameter Exponentiated Generalized Gamma distribution with parameters mu
,
sigma
, nu
and tau
has density given by
\(f(x) = \frac{\nu \sigma}{\mu \Gamma(\tau)} \left(\frac{x}{\mu}\right)^{\sigma \tau -1} \exp\left\{ - \left( \frac{x}{\mu} \right)^\sigma \right\} \left\{ \gamma_1\left( \tau, \left( \frac{x}{\mu} \right)^\sigma \right) \right\}^{\nu-1} ,\)
for x > 0.
References
Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010 .
Gauss M. C, Edwin M.M O, Giovana O. S (2011). “The exponentiated generalized gamma distribution with application to lifetime data.” Journal of Statistical Computation and Simulation, 81(7), 827–842. doi:10.1080/00949650903517874 .
Author
Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co
Examples
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters
## The probability density function
curve(dEGG(x, mu=0.1, sigma=0.8, nu=10, tau=1.5), from=0.000001, to=1.5, ylim=c(0, 2.5),
col="red", las=1, ylab="f(x)")
## The cumulative distribution and the Reliability function
par(mfrow=c(1, 2))
curve(pEGG(x, mu=0.1, sigma=0.8, nu=10, tau=1.5),
from=0.000001, to=1.5, col="red", las=1, ylab="F(x)")
curve(pEGG(x, mu=0.1, sigma=0.8, nu=10, tau=1.5, lower.tail=FALSE),
from=0.000001, to=1.5, col="red", las=1, ylab="R(x)")
## The quantile function
p <- seq(from=0, to=0.99999, length.out=100)
plot(x=qEGG(p, mu=0.1, sigma=0.8, nu=10, tau=1.5), y=p, xlab="Quantile",
las=1, ylab="Probability")
curve(pEGG(x, mu=0.1, sigma=0.8, nu=10, tau=1.5),
from=0.00001, add=TRUE, col="red")
## The random function
hist(rEGG(n=100, mu=0.1, sigma=0.8, nu=10, tau=1.5), freq=FALSE,
xlab="x", las=1, main="")
curve(dEGG(x, mu=0.1, sigma=0.8, nu=10, tau=1.5),
from=0.0001, to=2, add=TRUE, col="red")
## The Hazard function
curve(hEGG(x, mu=0.1, sigma=0.8, nu=10, tau=1.5), from=0.0001, to=1.5,
col="red", ylab="Hazard function", las=1)
par(old_par) # restore previous graphical parameters