Skip to contents

The Sarhan and Zaindin's Modified Weibull distribution

Usage

SZMW(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

defines the mu.link, with "log" link as the default for the mu parameter.

defines the sigma.link, with "log" link as the default for the sigma.

defines the nu.link, with "log" link as the default for the nu parameter.

Value

Returns a gamlss.family object which can be used to fit a SZMW distribution in the gamlss() function.

Details

The Sarhan and Zaindin's Modified Weibull distribution with parameters mu, sigma and nu has density given by

\(f(x)=(\mu + \sigma \nu x^(\nu - 1)) \exp(- \mu x - \sigma x^\nu),\)

for \(x > 0\), \(\mu > 0\), \(\sigma > 0\) and \(\nu > 0\).

References

Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010 .

Sarhan AM, Zaindin M (2009). “Modified Weibull distribution.” APPS. Applied Sciences, 11, 123–136.

See also

Author

Johan David Marin Benjumea, johand.marin@udea.edu.co

Examples

# Example 1
# Generating some random values with
# known mu, sigma and nu
y <- rSZMW(n=100, mu = 1, sigma = 1, nu = 1.5)

# Fitting the model
require(gamlss)

mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='SZMW',
              control=gamlss.control(n.cyc=5000, trace=FALSE))

# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod, what='mu'))
#> (Intercept) 
#>    1.569647 
exp(coef(mod, what='sigma'))
#> (Intercept) 
#>   0.6054654 
exp(coef(mod, what='nu'))
#> (Intercept) 
#>    4.048657 

# Example 2
# Generating random values under some model
n     <- 200
x1    <- runif(n)
x2    <- runif(n)
mu    <- exp(-1.6 * x1)
sigma <- exp(0.9 - 1 * x2)
nu    <- 1.5
x     <- rSZMW(n=n, mu, sigma, nu)

mod <- gamlss(x~x1, mu.fo=~x1, sigma.fo=~x2, nu.fo=~1, family=SZMW,
              control=gamlss.control(n.cyc=50000, trace=FALSE))

coef(mod, what="mu")
#> (Intercept)          x1 
#>  0.03979481  0.07345912 
coef(mod, what="sigma")
#> (Intercept)          x2 
#>   0.6904316  -1.2759062 
coef(mod, what='nu')
#> (Intercept) 
#>   0.6447194