Reflected Weibull distribution
Value
Returns a gamlss.family object which can be used to fit a RW distribution in the gamlss()
function.
Details
The Reflected Weibull Distribution with parameters mu
and sigma
has density given by
\(f(y) = \mu\sigma (-y) ^{\sigma - 1} e ^ {-\mu(-y)^\sigma},\)
for y < 0
References
Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010 .
Clifford Cohen A (1973). “The Reflected Weibull Distribution.” Technometrics, 15(4), 867–873. doi:10.2307/1267396 .
Author
Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co
Examples
# Example 1
# Generating some random values with
# known mu and sigma
y <- rRW(n=100, mu=1, sigma=1)
# Fitting the model
require(gamlss)
mod <- gamlss(y~1, sigma.fo=~1, family= 'RW',
control=gamlss.control(n.cyc=5000, trace=FALSE))
# Extracting the fitted values for mu and sigma
# using the inverse link function
exp(coef(mod, 'mu'))
#> (Intercept)
#> 1.037009
exp(coef(mod, 'sigma'))
#> (Intercept)
#> 0.8407793
# Example 2
# Generating random values under some model
n <- 200
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(1.5 - 1.5 * x1)
sigma <- exp(2 - 2 * x2)
x <- rRW(n=n, mu, sigma)
mod <- gamlss(x~x1, sigma.fo=~x2, family=RW,
control=gamlss.control(n.cyc=5000, trace=FALSE))
coef(mod, what="mu")
#> (Intercept) x1
#> 1.315003 -1.192258
coef(mod, what="sigma")
#> (Intercept) x2
#> 2.316710 -2.522448