Skip to contents

The Quasi XGamma Poisson family

Usage

QXGP(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

defines the mu.link, with "log" link as the default for the mu parameter.

defines the sigma.link, with "log" link as the default for the sigma.

defines the nu.link, with "log" link as the default for the nu parameter.

Value

Returns a gamlss.family object which can be used to fit a QXGP distribution in the gamlss() function.

Details

The Quasi XGamma Poisson distribution with parameters mu, sigma and nu has density given by

\(f(x)= K(\mu, \sigma, \nu)(\frac {\sigma^{2} x^{2}}{2} + \mu) exp(\frac{\nu exp(-\sigma x)(1 + \mu + \sigma x + \frac {\sigma^{2}x^{2}}{2})}{1+\mu} - \sigma x),\)

for \(x > 0\), \(\mu> 0\), \(\sigma> 0\), \(\nu> 1\).

where

\(K(\mu, \sigma, \nu) = \frac{\nu \sigma}{(exp(\nu)-1)(1+\mu)}\)

References

subhradev2018RelDists

See also

Author

Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co

Examples

# Example 1
# Generating some random values with
# known mu, sigma and nu
y <- rQXGP(n=200, mu=4, sigma=2, nu=3)

# Fitting the model
require(gamlss)

mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='QXGP',
              control=gamlss.control(n.cyc=5000, trace=FALSE))

# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod, what='mu'))
#> (Intercept) 
#>      262765 
exp(coef(mod, what='sigma'))
#> (Intercept) 
#>    1.611081 
exp(coef(mod, what='nu'))
#> (Intercept) 
#>    2.767036 

# Example 2
# Generating random values under some model
n <- 2000
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(-2.19 + 3 * x1)
sigma <- exp(1 - 2 * x2)
nu <- 1
x <- rQXGP(n=n, mu, sigma, nu)

mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, family=QXGP,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

coef(mod, what="mu")
#> (Intercept)          x1 
#>  -0.7621993   0.3987146 
coef(mod, what="sigma")
#> (Intercept)          x2 
#>    1.099420   -2.179276 
exp(coef(mod, what="nu"))
#> (Intercept) 
#>    0.891471