Power Lindley distribution
Value
Returns a gamlss.family object which can be used to fit a PL distribution in the gamlss()
function.
Details
The Power Lindley Distribution with parameters mu
and sigma
has density given by
\(f(x) = \frac{\mu \sigma^2}{\sigma + 1} (1 + x^\mu) x ^ {\mu - 1} \exp({-\sigma x ^\mu}),\)
for x > 0.
References
Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010 .
Ghitanya ME, Al-Mutairi DK, Balakrishnanb N, Al-Enezi LJ (2013). “Power Lindley distribution and associated inference.” Computational Statistics and Data Analysis, 64, 20–33. doi:10.1016/j.csda.2013.02.026 .
Author
Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co
Examples
# Example 1
# Generating some random values with
# known mu and sigma
y <- rPL(n=100, mu=1.5, sigma=0.2)
# Fitting the model
require(gamlss)
mod <- gamlss(y~1, sigma.fo=~1, family= 'PL',
control=gamlss.control(n.cyc=5000, trace=FALSE))
# Extracting the fitted values for mu and sigma
# using the inverse link function
exp(coef(mod, 'mu'))
#> (Intercept)
#> 1.71034
exp(coef(mod, 'sigma'))
#> (Intercept)
#> 0.1549226
# Example 2
# Generating random values under some model
n <- 200
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(1.2 - 2 * x1)
sigma <- exp(0.8 - 3 * x2)
x <- rPL(n=n, mu, sigma)
mod <- gamlss(x~x1, sigma.fo=~x2, family=PL,
control=gamlss.control(n.cyc=5000, trace=FALSE))
coef(mod, what="mu")
#> (Intercept) x1
#> 1.300200 -2.113993
coef(mod, what="sigma")
#> (Intercept) x2
#> 0.6819186 -2.8476661