Skip to contents

Power Lindley distribution

Usage

PL(mu.link = "log", sigma.link = "log")

Arguments

defines the mu.link, with "log" link as the default for the mu parameter.

defines the sigma.link, with "log" link as the default for the sigma.

Value

Returns a gamlss.family object which can be used to fit a PL distribution in the gamlss() function.

Details

The Power Lindley Distribution with parameters mu and sigma has density given by

\(f(x) = \frac{\mu \sigma^2}{\sigma + 1} (1 + x^\mu) x ^ {\mu - 1} \exp({-\sigma x ^\mu}),\)

for x > 0.

References

Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010 .

Ghitanya ME, Al-Mutairi DK, Balakrishnanb N, Al-Enezi LJ (2013). “Power Lindley distribution and associated inference.” Computational Statistics and Data Analysis, 64, 20–33. doi:10.1016/j.csda.2013.02.026 .

See also

Author

Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co

Examples

# Example 1
# Generating some random values with
# known mu and sigma 
y <- rPL(n=100, mu=1.5, sigma=0.2)

# Fitting the model
require(gamlss)

mod <- gamlss(y~1, sigma.fo=~1, family= 'PL',
              control=gamlss.control(n.cyc=5000, trace=FALSE))

# Extracting the fitted values for mu and sigma
# using the inverse link function
exp(coef(mod, 'mu'))
#> (Intercept) 
#>     1.71034 
exp(coef(mod, 'sigma'))
#> (Intercept) 
#>   0.1549226 

# Example 2
# Generating random values under some model
n <- 200
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(1.2 - 2 * x1)
sigma <- exp(0.8 - 3 * x2)
x <- rPL(n=n, mu, sigma)

mod <- gamlss(x~x1, sigma.fo=~x2, family=PL,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

coef(mod, what="mu")
#> (Intercept)          x1 
#>    1.300200   -2.113993 
coef(mod, what="sigma")
#> (Intercept)          x2 
#>   0.6819186  -2.8476661