Skip to contents

#' The Modified Weibull distribution

Usage

MW(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

defines the mu.link, with "log" link as the default for the mu parameter.

defines the sigma.link, with "log" link as the default for the sigma.

defines the nu.link, with "log" link as the default for the nu parameter.

Value

Returns a gamlss.family object which can be used to fit a MW distribution in the gamlss() function.

Details

The Modified Weibull distribution with parameters mu, sigma and nu has density given by

\(f(x) = \mu (\sigma + \nu x) x^(\sigma - 1) \exp(\nu x) \exp(-\mu x^(\sigma) \exp(\nu x)),\)

for \(x > 0\), \(\mu > 0\), \(\sigma \geq 0\) and \(\nu \geq 0\).

References

Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010 .

Lai CD, Xie M, Murthy DNP (2003). “A modified Weibull distribution.” IEEE Transactions on reliability, 52(1), 33–37.

See also

Author

Johan David Marin Benjumea, johand.marin@udea.edu.co

Examples

# Example 1
# Generating some random values with
# known mu, sigma and nu
y <- rMW(n=100, mu = 2, sigma = 1.5, nu = 0.2)

# Fitting the model
require(gamlss)

mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family= 'MW',
               control=gamlss.control(n.cyc=5000, trace=FALSE))

# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod, what='mu'))
#> (Intercept) 
#>    0.956038 
exp(coef(mod, what='sigma'))
#> (Intercept) 
#>    1.100956 
exp(coef(mod, what='nu'))
#> (Intercept) 
#>   0.8777585 

# Example 2
# Generating random values under some model
n     <- 200
x1    <- rpois(n, lambda=2)
x2    <- runif(n)
mu    <- exp(3 -1 * x1)
sigma <- exp(2 - 2 * x2)
nu    <- 0.2
x     <- rMW(n=n, mu, sigma, nu)

mod <- gamlss(x~x1, mu.fo=~x1, sigma.fo=~x2, nu.fo=~1, family=MW,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

coef(mod, what="mu")
#> (Intercept)          x1 
#>    2.960504   -1.049355 
coef(mod, what="sigma")
#> (Intercept)          x2 
#>    2.000640   -2.015127 
coef(mod, what='nu')
#> (Intercept) 
#>   -1.091162