Skip to contents

The Marshall-Olkin Extended Weibull family

Usage

MOEW(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

defines the mu.link, with "log" link as the default for the mu parameter.

defines the sigma.link, with "log" link as the default for the sigma.

defines the nu.link, with "log" link as the default for the nu parameter.

Value

Returns a gamlss.family object which can be used to fit a MOEW distribution in the gamlss() function.

Details

The Marshall-Olkin Extended Weibull distribution with parameters mu, sigma and nu has density given by

\(f(x) = \frac{\mu \sigma \nu (\nu x)^{\sigma - 1} exp\{{-(\nu x )^{\sigma}}\}}{\{1-(1-\mu) exp\{{-(\nu x )^{\sigma}}\} \}^{2}},\)

for x > 0.

References

almalki2014modificationsRelDists

ghitany2005RelDists

See also

Author

Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co

Examples

# Example 1
# Generating some random values with
# known mu, sigma and nu
y <- rMOEW(n=400, mu=0.5, sigma=0.7, nu=1)

# Fitting the model
require(gamlss)

mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='MOEW',
              control=gamlss.control(n.cyc=5000, trace=FALSE))

# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod, what='mu'))
#> (Intercept) 
#>   0.6409427 
exp(coef(mod, what='sigma'))
#> (Intercept) 
#>   0.6740427 
exp(coef(mod, what='nu'))
#> (Intercept) 
#>    1.358404 

# Example 2
# Generating random values under some model
n <- 500
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(-1.20 + 3 * x1)
sigma <- exp(0.84 - 2 * x2)
nu <- 1
x <- rMOEW(n=n, mu, sigma, nu)

mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, family=MOEW,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

coef(mod, what="mu")
#> (Intercept)          x1 
#>   -1.770539    4.407826 
coef(mod, what="sigma")
#> (Intercept)          x2 
#>   0.4363649  -1.3033004 
exp(coef(mod, what="nu"))
#> (Intercept) 
#>     1.09799