Skip to contents

The Gamma Weibull family

Usage

GammaW(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

defines the mu.link, with "log" link as the default for the mu parameter.

defines the sigma.link, with "log" link as the default for the sigma.

defines the nu.link, with "log" link as the default for the nu parameter.

Value

Returns a gamlss.family object which can be used to fit a GammaW distribution in the gamlss() function.

Details

The Gamma Weibull distribution with parameters mu, sigma and nu has density given by

\(f(x)= \frac{\sigma \mu^{\nu}}{\Gamma (\nu)} x^{\nu \sigma - 1} \exp(-\mu x^\sigma),\)

for \(x > 0\), \(\mu > 0\), \(\sigma \geq 0\) and \(\nu > 0\).

References

Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010 .

Stacy EW, others (1962). “A generalization of the gamma distribution.” The Annals of mathematical statistics, 33(3), 1187–1192.

See also

Author

Johan David Marin Benjumea, johand.marin@udea.edu.co

Examples

# Example 1
# Generating some random values with
# known mu, sigma and nu
y <- rGammaW(n=100, mu = 0.5, sigma = 2, nu=1)

# Fitting the model
require(gamlss)

mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='GammaW',
              control=gamlss.control(n.cyc=5000, trace=FALSE))

# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod, what='mu'))
#>  (Intercept) 
#> 0.0004761073 
exp(coef(mod, what='sigma'))
#> (Intercept) 
#>    8.534264 
exp(coef(mod, what='nu'))
#> (Intercept) 
#>   0.2506652 

# Example 2
# Generating random values under some model
n     <- 200
x1    <- runif(n)
x2    <- runif(n)
mu    <- exp(-1.6 * x1)
sigma <- exp(1.1 - 1 * x2)
nu    <- 1
x     <- rGammaW(n=n, mu, sigma, nu)

mod <- gamlss(x~x1, mu.fo=~x1, sigma.fo=~x2, nu.fo=~1, family=GammaW,
              control=gamlss.control(n.cyc=50000, trace=FALSE))

coef(mod, what="mu")
#> (Intercept)          x1 
#>   -1.899445   -2.359121 
coef(mod, what="sigma")
#> (Intercept)          x2 
#>   1.7900635  -0.9977632 
coef(mod, what='nu')
#> (Intercept) 
#>  -0.4255001