Skip to contents

The Extended Weibull family

Usage

ExW(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

defines the mu.link, with "log" link as the default for the mu parameter.

defines the sigma.link, with "log" link as the default for the sigma.

defines the nu.link, with "log" link as the default for the nu parameter.

Value

Returns a gamlss.family object which can be used to fit a ExW distribution in the gamlss() function.

Details

The Extended Weibull distribution with parameters mu, sigma and nu has density given by

\(f(x) = \frac{\mu \sigma \nu x^{\sigma -1} exp({-\mu x^{\sigma}})} {[1 -(1-\nu) exp({-\mu x^{\sigma}})]^2},\)

for x > 0.

References

Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010 .

Tieling Z, Min X (2007). “Failure Data Analysis with Extended Weibull Distribution.” Communications in Statistics - Simulation and Computation, 36, 579–592. doi:10.1080/03610910701236081 .

See also

Author

Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co

Examples

# Example 1
# Generating some random values with
# known mu, sigma and nu
y <- rExW(n=200, mu=0.3, sigma=2, nu=0.05)

# Fitting the model
require(gamlss)

mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='ExW',
              control=gamlss.control(n.cyc=5000, trace=FALSE))

# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod, what='mu'))
#> (Intercept) 
#>    2.957026 
exp(coef(mod, what='sigma'))
#> (Intercept) 
#>    1.225708 
exp(coef(mod, what='nu'))
#> (Intercept) 
#>     1.94751 

# Example 2
# Generating random values under some model
n <- 500
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(-2 + 3 * x1)
sigma <- exp(1.3 - 2 * x2)
nu <- 0.05
x <- rExW(n=n, mu, sigma, nu)

mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, family=ExW,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

coef(mod, what="mu")
#> (Intercept)          x1 
#>   1.1367679   0.4107476 
coef(mod, what="sigma")
#> (Intercept)          x2 
#>    1.084149   -2.774546 
exp(coef(mod, what="nu"))
#> (Intercept) 
#>    1.938714