The Extended Exponential Geometric family
Value
Returns a gamlss.family object which can be used to fit a EEG distribution in the gamlss()
function.
Details
The Extended Exponential Geometric distribution with parameters mu
and sigma
has density given by
\(f(x)= \mu \sigma \exp(-\mu x)(1 - (1 - \sigma)\exp(-\mu x))^{-2},\)
for \(x > 0\), \(\mu > 0\) and \(\sigma > 0\).
References
Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010 .
Adamidis K, Dimitrakopoulou T, Loukas S (2005). “On an extension of the exponential-geometric distribution.” Statistics & probability letters, 73(3), 259–269.
Author
Johan David Marin Benjumea, johand.marin@udea.edu.co
Examples
# Generating some random values with
# known mu, sigma, nu and tau
y <- rEEG(n=100, mu = 1, sigma =1.5)
# Fitting the model
require(gamlss)
mod <- gamlss(y~1, sigma.fo=~1, family=EEG,
control=gamlss.control(n.cyc=5000, trace=FALSE))
# Extracting the fitted values for mu, sigma, nu and tau
# using the inverse link function
exp(coef(mod, what='mu'))
#> (Intercept)
#> 0.814895
exp(coef(mod, what='sigma'))
#> (Intercept)
#> 1.418915
# Example 2
# Generating random values under some model
n <- 200
x1 <- runif(n, min=0.1, max=0.2)
x2 <- runif(n, min=0.1, max=0.15)
mu <- exp(0.75 - x1)
sigma <- exp(0.5 - x2)
x <- rEEG(n=n, mu, sigma)
mod <- gamlss(x~x1, sigma.fo=~x2, family=EEG,
control=gamlss.control(n.cyc=5000, trace=FALSE))
coef(mod, what="mu")
#> (Intercept) x1
#> 0.4961979 -0.7919087
coef(mod, what="sigma")
#> (Intercept) x2
#> 0.5301076 -1.6138227